5,062 research outputs found

    Metallic glass as a temperature sensor during ion plating

    Get PDF
    The temperature of the interface and/or a superficial layer of a substrate during ion plating was investigated using a metallic glass of the composition Fe67Co18B14Si1 as the substrate and as the temperature sensor. Transmission electron microscopy and diffraction studies determined the microstructure of the ion-plated gold film and the substrate. Results indicate that crystallization occurs not only in the film, but also in the substrate. The grain size of crystals formed during ion plating was 6 to 60 nm in the gold film and 8 to 100 nm in the substrate at a depth of 10 to 15 micrometers from the ion-plated interface. The temperature rise of the substrate during ion plating was approximately 500 C. Discontinuous changes in metallurgical microstructure, and physical, chemical, and mechanical properties during the amorphous to crystalline transition in metallic glasses make metallic glasses extremely useful materials for temperature sensor applications in coating processes

    The XPS depth profiling and tribological characterization of ion-plated gold on various metals

    Get PDF
    Friction properties were measured with a gold film; the graded interface between gold and nickel substrate; and the nickel substrate. All sliding was conducted against hard silicon carbide pins in two processes. In the adhesive process, friction arises primarily from adhesion between sliding surfaces. In the abrasion process, friction occurs as a result of the hard pin sliding against the film, indenting into it, and plowing a series of grooves. Copper and 440 C stainless steel substrates were also used. Results indicate that the friction related to both adhesion and abrasion is influenced by coating depth. The trends in friction behavior as a function of film depth are, however, just the opposite. The graded interface exhibited the highest adhesion and friction, while the graded interface resulted in the lowest abrasion and friction. The coefficient of friction due to abrasion is inversely related to the hardness. The greater the hardness of the surface, the lower is the abrasion and friction. The microhardness in the graded interface exhibited the highest hardness due to an alloy hardening effect. Almost no graded interface between the vapor-deposited gold film and the substrates was detected

    Friction and hardness of gold films deposited by ion plating and evaporation

    Get PDF
    Sliding friction experiments were conducted with ion-plated and vapor-deposited gold films on various substrates in contact with a 0.025-mm-radius spherical silicon carbide rider in mineral oil. Hardness measurements were also made to examine the hardness depth profile of the coated gold on the substrate. The results indicate that the hardness is influenced by the depth of the gold coating from the surface. The hardness increases with an increase in the depth. The hardness is also related to the composition gradient in the graded interface between the gold coating and the substrate. The graded interface exhibited the highest hardness resulting from an alloy hardening effect. The coefficient of friction is inversely related to the hardness, namely, the load carrying capacity of the surface. The greater the hardness that the metal surface possesses, the lower is the coefficient of friction. The graded interface exhibited the lowest coefficient of friction

    Tribological properties of boron nitride synthesized by ion beam deposition

    Get PDF
    The adhesion and friction behavior of boron nitride films on 440 C bearing stainless steel substrates was examined. The thin films containing the boron nitride were synthesized using an ion beam extracted from a borazine plasma. Sliding friction experiments were conducted with BN in sliding contact with itself and various transition metals. It is indicated that the surfaces of atomically cleaned BN coating film contain a small amount of oxides and carbides, in addition to boron nitride. The coefficients of friction for the BN in contact with metals are related to the relative chemical activity of the metals. The more active the metal, the higher is the coefficient of friction. The adsorption of oxygen on clean metal and BN increases the shear strength of the metal - BN contact and increases the friction. The friction for BN-BN contact is a function of the shear strength of the elastic contacts. Clean BN surfaces exhibit relatively strong interfacial adhesion and high friction. The presence of adsorbates such as adventitious carbon contaminants on the BN surfaces reduces the shear strength of the contact area. In contrast, chemically adsorbed oxygen enhances the shear strength of the BN-BN contact and increases the friction

    Oscillation Phenomena in the disk around the massive black hole Sagittarius A*

    Full text link
    We report the detection of radio QPOs with structure changes using the Very Long Baseline Array (VLBA) at 43 GHz. We found conspicuous patterned changes of the structure with P = 16.8 +- 1.4, 22.2 +- 1.4, 31.2 +- 1.5, 56.4 +- 6 min, very roughly in a 3:4:6:10 ratio. The first two periods show a rotating one-arm structure, while the P = 31.4 min shows a rotating 3-arm structure, as if viewed edge-on. At the central 50 microasec the P = 56.4 min period shows a double amplitude variation of those in its surroundings. Spatial distributions of the oscillation periods suggest that the disk of SgrA* is roughly edge-on, rotating around an axis with PA = -10 degree. Presumably, the observed VLBI images of SgrA* at 43 GHz retain several features of the black hole accretion disk of SgrA* in spite of being obscured and broadened by scattering of surrounding plasma.Comment: 24 pages, 20 figures, revised version submitted to MN main journal (2010, Jan., 12th

    Humidity effects on adhesion of nickel-zinc ferrite in elastic contact with magnetic tape and itself

    Get PDF
    The effects of humidity on the adhesion of Ni-Zn ferrite and magnetic tape in elastic contact with a Ni-Zn ferrite hemispherical pin in moist nitrogen were studied. Adhesion was independent of normal load in dry, humid, and saturated nitrogen. Ferrites adhere to ferrites in a saturated atmosphere primarily from the surface tension effects of a thin film of water adsorbed on the ferrite surfaces. The surface tension of the water film calculated from the adhesion results was 48 times 0.00001 to 56 times 0.00001 N/cm; the accepted value for water is 72.7 x 0.00001 N/cm. The adhesion of ferrite-ferrite contacts increased gradually with increases in relative humidity to 80 percent, but rose rapidly above 80 percent. The adhesion at saturation was 30 times or more greater than that below 80 percent relative humidity. Although the adhesion of magnetic tape - ferrite contacts remained low below 40 percent relative humidity and the effect of humidity was small, the adhesion increased considerably with increasing relative humidity above 40 percent. The changes in adhesion of elastic contacts were reversible on humidifying and dehumidifying

    A Measurement of Proper Motions of SiO Maser Sources in the Galactic Center with the VLBA

    Full text link
    We report on the high-precision astrometric observations of maser sources around the Galactic Center in the SiO J=1--0 v=1 and 2 lines with the VLBA during 2001 -- 2004. With phase-referencing interferometry referred to the radio continuum source Sgr A*, accurate positions of masers were obtained for three detected objects: IRS 10 EE (7 epochs), IRS 15NE (2 epochs), and SiO 6 (only 1 epoch). Because circumstellar masers of these objects were resolved into several components, proper motions for the maser sources were derived with several different methods. Combining our VLBA results with those of the previous VLA observations, we obtained the IRS 10EE proper motion of 76+-3 km s^{-1} (at 8 kpc) to the south relative to Sgr A*. Almost null proper motion of this star in the east--west direction results in a net transverse motion of the infrared reference frame of about 30+-9 km s^{-1} to the west relative to Sgr A*. The proper-motion data also suggests that IRS 10EE is an astrometric binary with an unseen massive companion.Comment: High-res. figures are available at ftp://ftp.nro.nao.ac.jp/nroreport/no656.pdf.gz . PASJ 60, No. 1 (2008) in pres
    • …
    corecore